Тепловой пункт Akva Lux VX

ПАСПОРТ

Продукция сертифицирована ГОССТАНДАРТом России в системе сертификации ГОСТ Р и имеет официальное заключение ЦГСЭН о гигиенической оценке.

Содержание «Паспорта» соответствует техническому описанию производителя

Содержание:

- 1. Сведения об изделии
 - 1.1 Наименование
 - 1.2 Изготовитель
 - 1.3 Продавец
- 2. Назначение изделия
- 3. Номенклатура и технические характеристики
- 4. Устройство
- 5. Принцип действия компонентов теплового пункта
- 6. Инструкция по монтажу и эксплуатации
 - 6.1. Меры безопасности
 - 6.2. Транспортировка и хранение
 - 6.3. Монтаж
 - 6.4. Запуск в работу
 - 6.5. Работа теплового пункта с байпасной линией
 - 6.6. Работа теплового пункта с циркуляцией ГВС
 - 6.7. Дополнительное оборудование
 - 6.8. Техническое обслуживание
 - 6.9. Возможные неисправности и способы их устранения
- 7. Комплектность
- 8. Утилизация
- 9. Сертификация
- 10. Гарантийные обязательства

1. Сведения об изделии

1.1 Наименование

Тепловой пункт Akva Lux VX

1.2 Изготовитель

"Danfoss Redan A/S", Sindalsvej 35, 8240 Risskov, Denmark.

1.3 Продавец

ЗАО «Данфосс», Россия, 127018, г. Москва, ул. Полковая, дом 13.

2. Назначение изделия

Тепловой пункт Akva Lux VX (рис.1) предназначен для нагрева воды для нужд горячего водоснабжения квартиры(частного дома) и для независимого присоединения системы отопления к тепловой сети. Греющим теплоносителем может быть как вода из тепловой сети, так и вода, нагретая в индивидуальном котле (рис.2).

Отопительная часть теплового пункта состоит из пластинчатых теплообменников из нержавеющей стали, предохранительного клапана для выпуска воздуха, расширительного бака и циркуляционного насоса. Она может управляться регулирующим клапаном, в зависимости от температуры наружного воздуха. Для радиаторной системы отопления используется пластинчатый теплообменник СВ 20-26Н. Для системы напольного отопления – пластинчатый теплообменник WP22-22.

Нагрев воды для хозяйственно бытовых нужд осуществляется в пластинчатом теплообменнике из нержавеющей стали. Терморегулирующий клапан с коррекцией по расходу обеспечивает поддержание температуры горячей воды на заданном уровне только в моменты ее потребления, мгновенно отключая подачу греющего теплоносителя в теплообменник при закрытии водоразборных кранов. Такой способ регулирования позволяет в значительной мере избежать отложения в теплообменнике накипи и образования бактерий, а также обеспечивает значительную экономию тепловой энергии. Тепловой пункт позволяет подключать к нему циркуляционную линию системы горячего водоснабжения без каких-либо конструктивных изменений и дополнительных компонентов.

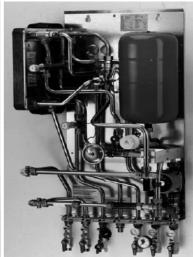


Рис.1 Тепловой пункт Akva Lux VX.

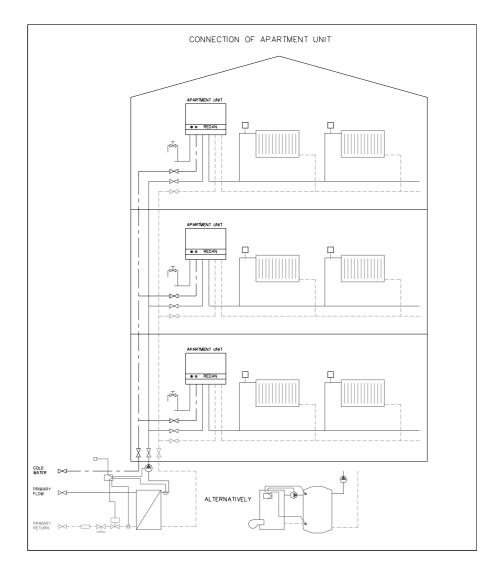


Рис.2 Пример использования теплового пункта Akva Lux VX.

3. Номенклатура и технические характеристики

Технические характеристики теплового пункта Akva Lux VX представлены в таблицах 1 – 2.

Таблица №1 Температура подачи ГВС 45 C, холодной воды 10 C.

	Т			<u> </u>		
ГВС,	Тип	ГВС,	Темп.	Температура	Потери	Расход
кВт	теплообменника	л/мин	греющ.	обратного	давления	греющ.
			воды,	теплоносителя,	ПО	воды,
			C	C	греющ.	л/час
					стороне,	
					бар	
35	CB20-26H	14,34	60	20	0,69	754
35	CB20-26H	14,34	80	15	0,53	464
50	CB20-40H	20,48	60	20	0,82	1077
50	CB20-40H	20,48	80	14	0,63	653

Отопление,	Пластинчатые	Темп. в	Темп. во	Потери	Расход
кВт	теплообменники	первичном	вторичном	давления	греющ.
		контуре, С	контуре, С	ПО	воды,
				греющ.	л/час
				стороне,	
				бар	
10	CB 20-26	80/52	50/70	0,55	308
15	CB 20-26	90/54	50/80	0,56	364
20	CB 20-26	80/54	50/70	0,61	499
20	CB 20-26	90/55	50/80	0,7	663
10	WP 22-22	80/31	30/35	0,51	176
15	WP22-22	90/31	30/35	0,52	220

Тепловой пункт Akva Lux VX рассчитан на следующие критичные параметры работы:

- 1. Номинальное давление 16 бар.
- 2. Минимальный перепад давления по греющей стороне 0,6 бар.
- 3. Максимальная температура 120 С.
- 4. Минимальное давление холодной воды на вводе в тепловой пункт 2,5 бар.
- 5. Максимальное содержание хлоридов в холодной воде 300 мг/л.

4. Устройство

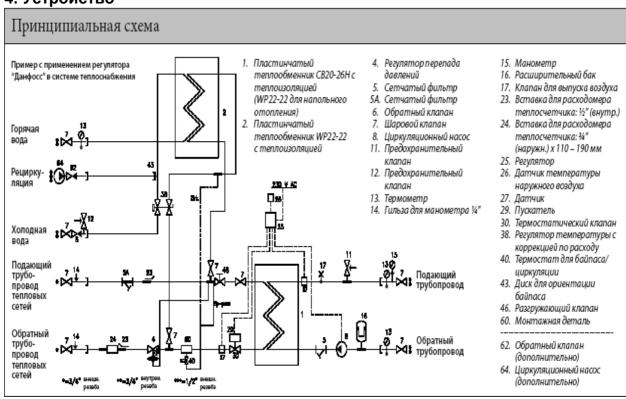
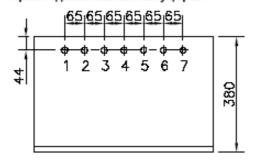



Рис.3 Функциональная схема Akva Lux VX

Присоединительные штуцеры:

- Для подающего трубопровода системы теплоснабжения
- Для обратного трубопровода системы теплоснабжения
- 3. Для холодной водопроводной воды
- Для циркуляционного трубопровода системы ГВС (если есть)
- 5. Для холодной водопроводной воды
- 6. Для подающего трубопровода системы отопления
- 7. Для обратного трубопровода системы отопления

Размеры присоединительных штуцеров:

Для трубопроводов системы теплоснабжения (с шаровым краном): ¾"(наружн.) Для трубопроводов отопления, холодной и горячей воды (с шаровыми кранами): ¾"(внутр)

Для циркуляционного трубопровода системы ГВС:

1/2"(наружн.)

Дополнительные элементы:

- вставка для расходомера теплосчетчика с 1" (наружн.) вместо ¾«;
- циркуляционный насос с регулируемым числом оборотов;
- регулятор постоянной температуры теплоносителя для системы отопления вместо регулятора с погодной коррекцией;
- подогрев пола с функцией аварийного закрытия клапана (только при регулировании температуры теплоносителя в системе отопления с погодной коррекцией);
- без кожуха;
- с окрашенными рамами белого цвета и слегка изогнутыми передними панелями, либо из листовой нержавеющей стали, либо из стального листа, окрашенного белой краской.

Вес теплового пункта с кожухом составляет 14 кг (с теплообменниками CB20-26H) и 15 кг (CB20-40H). Все трубопроводы, пластины паяного теплообменника сделаны из нержавеющей стали AISI 316, все соединения на латунных накидных гайках и резиновых прокладках. Присоединение внешних трубопроводов осуществляется с помощью внешней трубной резьбы диаметром $\frac{1}{2}$ ". Заказчик может в качестве дополнительной опции заказать для теплового пункта теплоизолированный кожух, сделанный из покрытой белым лаком или окрашенной листовой стали, а также из нержавеющей стали.

5. Принцип действия компонентов теплового пункта

Тепловой пункт Akva Vita является водонагревателем немедленного действия. Горячая вода подогревается котловой или сетевой водой только когда открыты водоразборные краны. Поддержание температуры горячей воды на заданном уровне во время пользования осуществляется пропорциональным регулятором прямого действия РТ (рис. 4,5).

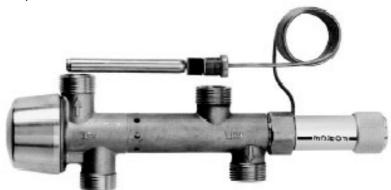
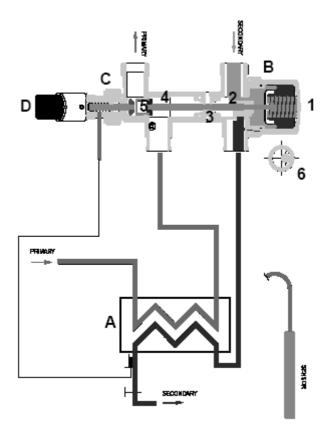



Рис.4 Регулятор температуры РТ.

- 1 регулирующая мембрана;
- 2 плунжер на вторичной стороне;
- 3 шпиндель;
- 4 плунжер на первичной стороне;
- 5 проходное сечение на греющей стороне;
- 6 проходное сечение на нагреваемой стороне;
- А пластина теплообменника;
- В вторичная сторона регулятора;
- С первичная сторона регулятора;
- D термостатический регулятор

Рис.5 Принцип действия РТ – регулятора.

РТ регулятор состоит из двух частей: регулирующая часть **B**, где проходит горячая вода ГВС (вторичная сторона) и регулируемая часть **C**, где проходит греющая вода (первичная сторона). Эти две части отделены друг от друга. Место прохождения шпинделя **3** уплотнено с помощью резиновых кольцевых уплотнений. Плунжер **2**, который перекрывает отверстие **6**, крепится жестко на шпинделе. Холодная вода поступает в регулятор, проходит под плунжером **2** через сечение **6** и поступает в теплообменник **A**.

Когда водоразборные краны открываются давление за плунжером 2 во вторичной стороне (по ходу движения горячей воды) падает. Это уменьшение давления по каналу передается в надмембранное пространство. Перед плунжером 2 и в полости под мембраной давление воды равно статическому давлению холодной воды на входе в регулятор. За счет создавшейся разницы давлений мембрана 1 перемещается вверх вместе с плунжером 2, шпинделем 3 и плунжером 4. В результате через регулятор РТ начинают проходить расход нагреваемой и греющей воды в пропорциональном соотношении. Чем больше открываются водоразборные краны, тем больше через регулятор проходит греющего теплоносителя. Коэффициент пропорциональности между двумя расходами, а следовательно желаемая температура горячей воды, определяется изменением проходного сечения на греющей стороне. Это изменение осуществляется автоматически термостатическим элементом D, который уменьшает проходное сечение при увеличении температуры воды в системе ГВС и наоборот.

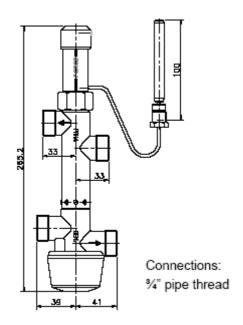


Рис.6 Регулятор РТ.

Регулятор РТ имеет следующие характеристики (рис.6):

Размеры в упаковке: 60х90х230 мм; Вес: 1,32 кг;

Присоединения: ¾ " наружная резьба ;

Материал корпуса: латунь; Плунжер по греющей стороне: латунь;

Плунжер по нагреваемой стороне: нержавеющая сталь;

Шпиндель/уплотнение: нержавеющая кислотостойкая сталь/тефлон;

Капиллярная трубка: медь; О-уплотнения, диафрагма: EPDM;

Максимальное давление: 16 бар; Максимальная темп-ра: 110 С;

Максимальный перепад давления (при котором клапан сможет закрыться): 6 бар;

Максимальный перепад давления (для корректной работы): 2 бар; Минимальный перепад давления по греющей стороне: 0,2 бар;

Минимальное давление холодной воды: 2 бар;

Диапазон регулирования: 20 – 70 С;

Kv=3,5;

Протечка клапана: 0,06 м3/ч.

Температура в системе отопления может поддерживаться постоянной с помощью регулятора температуры прямого действия типа Force T C (рис.7). Также температура воды в системе отопления может регулироваться в зависимости от температуры наружного воздуха с помощью электронного контроллера ECL 100, 200, 300 и клапана VS2 Dn=15 (Kv=0,63; Kv=1; Kv=1,6) с электроприводом AMV 100, датчиками температур ESM11, ESM 10.

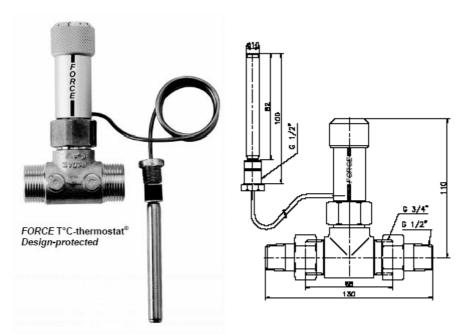


Рис. 7 Регулятор температуры Force T C.

Регулятор Force имеет следующие характеристики:

Размеры в упаковке: 91х95х285 мм;

Вес: 1,1 кг;

Присоединения: ¾ " наружная резьба (присоединяется при помощи фитингов ½"

н.р.х ¾ " в.р.)

Длина капилляра: 1250 мм;

Материал корпуса: латунь;

Шток, седло: нержавеющая сталь;

Капиллярная трубка: медь;

Датчик температуры: нержавеющая сталь;

Максимальное давление: 16 бар; Пробное давление: 21 бар; Максимальная темп-ра: 120 С; Максимальный перепад давления: 6 бар; Регулируемая температура: 20-70 С;

Возможные Kv=1,2; 1,6; 2,1

Монтируется на обратном трубопроводе.

Для более устойчивой работы теплового пункта, а также более стабильного регулирования на греющей стороне теплового пункта установлен регулятор перепада давления Force TD 200 (рис.8).

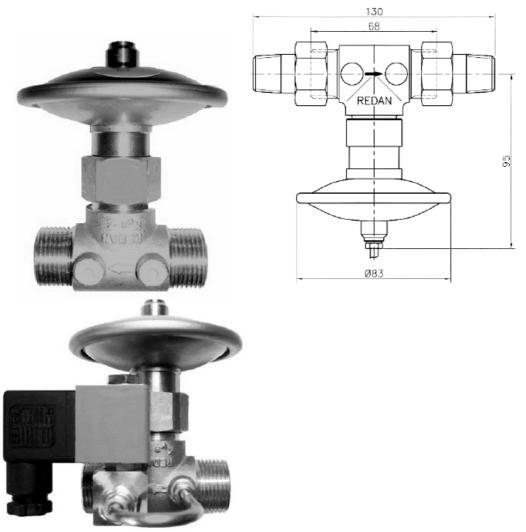


Рис.8. Регулятор перепада давления Force TD 200.

Регулятор Force TD 200 имеет следующие характеристики:

Размеры в упаковке: 145х165х165 мм;

Вес: 1,2 кг;

Присоединения: ¾ " наружная резьба (присоединяется при помощи фитингов ½"

н.р.х ¾ " в.р.)

Импульсная трубка: присоединение 3/8 " наружная резьба;

Варианты: с соленоидным клапаном для работы по таймеру и без него (рис.7)

Материал корпуса: латунь;

Шток, седло: нержавеющая сталь;

Импульсная трубка: медь;

Датчик температуры: нержавеющая сталь;

Диафрагма: EPDM

Максимальное давление: 16 бар; Пробное давление: 21 бар; Максимальная темп-ра: 120 С; Максимальный перепад давления: 6 бар; Значения Ку для регуляторов с фиксированным поддерживаемым перепадом давления.

TD200u / 7 – 0,10 bar k _{vs} 1,2
TD200u / 7 – 0,20 bar k _{vs} 1,2
TD200u / 9 – 0,10 bar k _{vs} 1,6
TD200u / 9 - 0,20 bar k _{vs} 1,6
TD200u / 9 − 0,50 bar k _{vs} 1,6
TD200u / 12 - 0,20 bar k _{vs} 2,1
TD200u / 12 - 0,50 bar k _{vs} 2,1

Значения Ку для регуляторов с регулируемым перепадом давления (по таймеру):

TDM200u/	7 – 0,10 bar k _{vs} 1,2	24 Volt	٦
TDM200u /	7 – 0,10 bar k _{vs} 1,2	220 Volt	

Динамический диапазон регуляторов перепада давления:

Туре	Q _{mln.}	Q _{nom.}	Q _{max.}	
TD200u/ 7	30	300	600	l/h
TD200u/ 9	40	400	800	l/h
TD200u/12	60	500	1000	l/h

6. Инструкция по монтажу и эксплуатации

6.1 Меры безопасности

Настоящая инструкция относится к стандартному тепловому пункту Akva Vita VX. Возможны различные модификации по желанию заказчика.

Для предупреждения опасности травмирования людей и повреждения оборудования необходимо внимательно прочитать и тщательно изучить данную инструкцию.

Работы по монтажу, запуску и техническому обслуживанию должны выполняться только квалифицированным и обученным персоналом.

Осторожно высокая температура и давление!

Максимальная температура воды в тепловом пункте составляет 120 С.

Максимальное давление воды в тепловом пункте 16 бар.

Перед монтажом теплового пункта убедитесь в том, что температура и давление находятся в допустимых пределах.

Монтаж теплового пункта должен быть осуществлен с установкой предохранительных клапанов на трубопроводах.

Осторожно высокая температура поверхности!

Тепловой пункт имеет поверхности с высокой температурой, которые могут стать причиной ожогов. Будьте особенно внимательны при работе вблизи теплового пункта.

Осторожно могут быть разрушения при транспортировке!

Перед монтажом теплового пункта убедитесь, что нем отсутствуют повреждения, связанные с транспортировкой.

Уровень шума!

Менее 55 дБ

Защита от коррозии!

Все трубы и фитинги в тепловом пункте, сделаны из нержавеющей стали и латуни.

6.2 Транспортировка и хранение

Если тепловой пункт до монтажа будет храниться на складе или где-то в другом месте, то необходимо убедиться, что помещение для хранения оборудования хорошо отапливается и содержится в сухом виде.

При транспортировке теплового пункта к месту монтажа рекомендуется закрепить оборудование специальными ремнями снизу к поддерживающим конструкциям, например деревянному поддону.

6.3. Монтаж

Тепловой пункт должен быть смонтирован и присоединен к циркуляционным системам квалифицированным и обученным персоналом.

Монтаж должен осуществляться согласно действующим нормам и правилам.

Необходимо предусмотреть свободное пространство вокруг теплового пункта для его монтажа и технического обслуживания.

Вследствие вибрации во время транспортировки, все соединения в тепловом пункте должны быть проверены и при необходимости подтянуты до проведения монтажа.

Рекомендуется всегда устанавливать на трубопроводе холодной воды обратный и предохранительные клапана. Установка предохранительного клапана должна быть осуществлена в соответствии с местными правилами и нормами. Также необходимо устанавливать на холодной воде до теплового пункта сетчатый фильтр с ячейками как можно меньшего размера.

Тепловой пункт в стандартной комплектации оснащен байпасной линией. Но эта линия может быть использована для циркуляции греющего теплоносителя через теплообменник при наличии циркуляции воды в системе ГВС. Переключение байпасной линии на циркуляцию осуществляется без применения дополнительных фитингов следующим образом (рис.9):

- Откручиваем гайку 1 и удаляем заглушку для циркуляционного трубопровода ГВС:
- Выкручиваем конический винт 2 (4 мм);
- Отсоединяем капиллярную трубку (байпасную линию) с присоединением и переносим ее из позиции **3** в позицию **2**;
- Закручиваем конический винт из позиции 2 в позицию 3;
- Присоединяем циркуляционный трубопровод системы ГВС к позиции **4** теплового пункта (в циркуляционной линии должен быть обязательно смонтирован циркуляционный насос и обратный клапан).

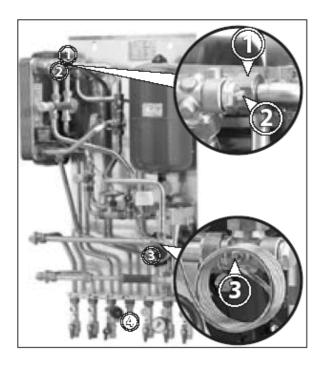


Рис.9 Переключение байпасной линии

Паяный теплообменник со всеми внутренними трубопроводами и фитингами крепятся внутри теплового пункта к задней опорной пластине. Опорная пластина имеет два монтажных отверстия для настенного монтажа теплового пункта.

Присоединение внешних трубопроводов осуществляется с помощью внешней трубной резьбы диаметром ½ ". Перед присоединением трубопроводов резьбовые соединения должны быть тщательно очищены.

Тепловой пункт Akva Vita не требует присоединения к электрической сети.

6.4. Запуск в работу.

Перед запуском в работу теплового пункта необходимо проверить, что:

- Трубопроводы присоединены к тепловому пункту согласно принципиальной схеме:
- Запорная арматура находится в закрытом состоянии;
- Резьбовые и фланцевые соединения собраны.
- Установить если это необходимо расходомеры теплосчетчика вместо проставок 966.

Перед началом работы необходимо заполнить тепловой пункт водой (см. Приложение 1).

- 1. Сначала заполняем водой паяный теплообменник системы ГВС таким образом, чтобы давление воды медленно поднялось до рабочего уровня. Для этого надо сначала постепенно открыть все запорные краны на линиях подачи ГВС 782, холодной воды 76, циркуляции ГВС 2617, подачи и возврата греющего теплоносителя 794 и 78. После этого следует немного приоткрыть водоразборный кран, после того как из крана выйдет весь воздух и пойдет устойчивая струя воды его надо снова перекрыть.
- 2. Потом заполняем теплообменник системы отопления. Открываем кран 78 на входе греющей воды в теплообменник системы отопления. Если на выходе греющей воды установлен регулятор температуры прямого действия, то он будет находиться в открытом положении (так температура воды в системе отопления ниже его уставки). Если же установлен регулирующий клапан с электроприводом, а тепловой пункт не подключен еще к электрической сети, то необходимо вручную открыть клапан (см. описание электропривода AMV 100 и клапана VS2 Dn=15). Заполняем внутренний контур системы отопления (на чертеже не показан). Открываем шаровые краны 795 и 782, воздушник 649 и заполняем нагреваемый контур теплообменника системы отопления.

Теперь тепловой пункт будет заполнен водой и поставлен под рабочее давление. Далее надо осмотреть тепловой пункт на отсутствие утечек воды, соответствие параметров давления и температуры допустимым значениям. При удовлетворительном осмотре тепловой пункт готов к дальнейшей работе.

3. Далее подключаем тепловой пункт к электрической сети напряжением 220 В. Под напряжением питания в тепловом пункте находятся насос 439 UPS 15 –40, электропривод AMV 100, контроллер ECL 100(200, 300).

Все теплообменники и тепловые пункты Danfoss проходят гидравлическое испытание на заводе-изготовителе.

6.5. Регулирование температуры в системе ГВС.

Регулирование температуры ГВС осуществляется вращением ручки термостатического элемента. Более высокое цифровое значение соответствует более высокой температуре горячей воды, и наоборот. Рекомендуемое значение температуры ГВС составляет 45-48 С при расходе ГВС 7-8 л/мин. Температура воды ГВС не должна

превышать значения 55 С, так как при большей температуре начинается интенсивное отложение накипи на пластинах теплообменника.

Если не получается установить требуемую температуру ГВС поворотом ручки регулятора, то тогда следует изменить стандартные настройки регулятора.

Установки РТ регулятора соответствуют следующим температурам:

1=25 C	4=55 C
2=35 C	5=65 C
3=45 C	6=75 C.

Рис.10 Регулирование температуры

6.6. Работа теплового пункта с байпасной линией.

Тепловой пункт в своей стандартной комплектации оснащен байпасной линией с термостатом – регулятором температуры прямого действия марки Danfoss FJVR, которые предназначены для того, чтобы поддерживать перед теплообменником постоянно небольшую циркуляцию греющего теплоносителя независимо от того, есть ли разбор горячей воды или нет. Благодаря этой конструкции горячая вода в кране появляется практически немедленно без слива остывшей воды. Рекомендуется установить термостат на значение 3 по шкале на ручке прибора.

Если температура горячей воды повышается медленно при открытии водоразборного крана, то необходимо установить термостат на более высокое значение, но не более **4**.(рис.11).

Рис.11 Термостат Danfoss FJVR

6.7. Работа теплового пункта с циркуляцией ГВС.

Если теплообменник соединен с циркуляционной линией ГВС, то FJVR термостат будет контролировать температуру греющего теплоносителя после теплообменника, обеспечивая небольшую его циркуляцию для подогрева циркуляционной воды ГВС. В этом случае рекомендуется установить термостат на значение **2-2,5**. При выключении циркуляционного насоса термостат должен быть закрыт.

Примерные значения контролируемой температуры по шкале термостата:

- 1=30 C
- 2=40 C
- 3=45 C
- 4=50 С (максимальная температура).

6.8. Регулирование температуры в системе отопления

В случае поддержания температуры в системе отопления с помощью регулятора температуры Force T C устанавливаем регулировочную ручку против цифры соответствующей требуемой температуре. Соответствие позиций на регулировочной голове значениям температуры (рис.12):

1 = 20°C 2 = 30°C 3 = 40°C 4 = 50°C 5 = 60°C 6 = 70°C

Рис.12 Установка требуемой температуры на клапане Force T C.

При регулировании температуры в системе отопления с помощью контроллера. Необходимые уставки для корректного регулирования заносятся в контроллер (см. описание контроллера ECL).

6.9. Дополнительное оборудование.

Предохранительные клапан защищают тепловой пункт от превышения давления в нем свыше допустимых значений (рис.13). Патрубок отвода среды у предохранительного клапана не должен быть заглушен, он должен быть смонтирован таким образом, чтобы безопасно отводить воду в случае срабатывания, а также иметь возможность доступа и

проверки на наличие утечек. Рекомендуется проверять работоспособность клапана путем поворота верхней его части в направлении стрелки каждые 6 месяцев.

Сетчатые фильтры необходимо как можно чаще очищать от грязи. Частота чистки фильтров зависит от качества используемой холодной воды.

Рис.13 Предохранительный клапан

6.10. Техническое обслуживание.

Для поддержания работоспособности теплового пункта в течение продолжительного времени необходимо регулярно проверять и обслуживать тепловой пункт. Регулярность обслуживания определяется действующими местными нормами и правилами, но не реже 2 раз в год (до и после отопительного периода). Кроме этого ежедневным осмотром необходимо контролировать следующие параметры:

- отсутствие утечек воды, требуемое значение температуры ГВС в кранах;
- стабильность расхода и возвращаемой температуры греющего теплоносителя;
- разность температур и давлений до и после теплообменника по греющей и нагреваемой сторонам;
- потери давления в фильтрах.

6.10. Возможные неисправности и способы их устранения

Неисправность	Возможная причина	Способ устранения				
Для системы ГВС						
Как узнать, что РТ	Если количество горячей	Ищите причину				
регулятор работает	воды в норме (температура	неисправности в другом				
некорректно?	не важна), то регулятор РТ	месте .				
	работает исправно.					
Какие параметры в	Тепловой пункт для	Свяжитесь с местными				
тепловой сети являются	нормальной работы требует	поставщиками тепла или				
удовлетворительными?	температуру греющей воды	ищите причину в				
	не менее 60 С и перепад	нагреваемом контуре котла				
	давления не менее 0,20 бар					
РТ контроллер течет в	Одна или две кольцевые	Замените регулятор или				
средней части	резиновые прокладки	изношенные уплотнения				
	износились (не влияет на					

	работу РТ регулятора)	
Маленький расход горячей	Неисправна диафрагма в РТ	Замените дефектную
воды в кране	регуляторе	диафрагму
Маленький расход горячей	- РТ регулятор некорректно	- Измените настройки
воды в кране; низкая	настроен;	регулятора;
температура горячей воды;	- Забит грязью фильтр в	- Почистите фильтр;
температура воды ГВС	линии подачи греющего	
постоянно колеблется	теплоносителя;	
	- Неисправен обратный	-Прочистите или замените
	клапан в комплекте с	обратный клапан;
	термостатом на возвратной линии греющего	
	теплоносителя;	
	- неисправен обратный	-Прочистите или замените
	клапан в линии циркуляции	обратный клапан;
	ГВС (часть горячей воды	oopamisii islanan,
	уходит через	
	циркуляционную линию в	
	обратном направлении);	
	- неисправен обратный	-Прочистите или замените
	клапан в линии возврата	обратный клапан;
	греющего теплоносителя;	
	- Отложение накипи на	-Замените пластинчатый
	пластинах теплообменника	или сделайте химическую
	(уменьшение разности	промывку теплообменника
	температур между входом и	
	выходом по обоим сторонам	
	теплообменника во время	
	работы); - грязь в РТ регуляторе;	- прочистите PT регулятор;
	- грязь в г г регуляторе, - большой расход холодной	- поставьте регулятор,
	воды (большой диаметр	давления на трубопровод
	трубопровода, высокое	холодной воды
	давление холодной воды,	женеднен ведв
	максимальный расход	
	холодной воды составляет	
	16-17 л/мин.	
Температура	Термостат на байпасе	Замените или
возвращаемого греющего	неисправен или	откорректируйте настройки
теплоносителя при	неправильно настроен	термостата
отсутствии водоразбора		
высокая, паяный		
теплообменник - холодный	Engal p DT nonvegees DT	Поррошойта пулна
Температура	Грязь в РТ регуляторе, РТ	Повращайте ручку
возвращаемого греющего	регулятор не перекрывает	регулирования
теплоносителя при отсутствии водоразбора	расход греющего теплоносителя, может быть	температуры несколько раз от одного крайнего
высокая, паяный	слышен шум от	положения до другого,
теплообменник - горячий	протекающего по	несколько раз подряд
INTERCOLLETE	регулятору расхода	откройте краны горячей
	греющей воды	воды, почистите РТ
	,	регулятор
Температура	Отложение накипи в	Замените пластинчатый
возвращаемого греющего	теплообменнике	теплообменник или
теплоносителя при		проведите его химическую
потреблении горячей воды -		промывку
высокая		

Места присоединения РТ регулятора не совпадают в тепловом пункте	При замене РТ регулятора	Отверните шестигранным ключом винты в центральной части РТ регулятора и поверните часть регулятора на 180°
	Для системы отопления	
Недостаточное количество тепла	Загрязнен фильтр N 161, 164	Почистите фильтры
	Цирк. Насос неисправен или	Проверьте установку
	работает на низкой скорости	скорости на насосе
	Неправильные установки в	Проверьте установки в
	контроллере ECL	контроллере
	Низкая установка температуры возвращаемой греющей воды	Откорректируйте установку температуры
	Установка перепада	Проверьте установку
	давления на регуляторе мала	перепада давления
	Отсутствует статическое	Произведите подпитку
	давление в системе отопления	системы отопления
	Наличие воздуха в системе	Удалите воздух из системы
	Неисправны радиаторные термостаты	Замените
	Неравномерное	Настройте (установите)
	распределение тепла в	балансировочные клапаны
	здании, потому что некорректно настроены	
	балансировочные клапаны	
	или они отсутствуют	
	Неисправен электропривод,	Проверьте, при
	датчики температуры, электронный контроллер	необходимости замените
	Электронный контроллер	Настройте контроллер
	настроен некорректно	согласно инструкции
Недостаточный теплосъем с греющей воды	Радиаторы меньше чем требуются	Проверьте
	Мало радиаторов открыты в доме	Откройте больше радиаторов
	Давление насоса слишком	Установите более низкую
	высокое	скорость на насосе
	Воздух в системе	Стравите воздух из системы
	Неисправны или	Проверьте, при
	неправильно настроены	необходимости замените
	радиаторные клапана	Процистите
	Попала грязь в регулирующий клапан или	Прочистите
	регулятор перепада	
	давления Неисправен регулирующий	Проверьте, при
	вентиль, датчики	необходимости замените
	температуры, контроллер	
	Электронный контроллер настроен некорректно	Откорректируйте настройки
Шум в системе	Насос развивает слишком	Установите более низкую

	большое давление	скорость вращения				
Для теплового пункта в целом						
Недостаточно тепла	Забит грязью фильтр №164	Почистите фильтр				
	Мал диаметр труб	Проверьте диаметр труб				
	подключаемых к					
	теплопункту или слишком					
	разветвленная система					
	Слишком низкая уставка	Увеличить уставку				
	температуры возвращаемой	температуры				
	греющей воды					
Потребление расхода	Неисправный регулирующий	Проверьте, при				
греющей воды высокое, а	вентиль, датчики	необходимости замените				
теплосъем недостаточный	температуры, контроллер					
	Температура греющей воды	Проверьте температуру				
	низка	воды в греющем контуре				
	Слишком большое	Свяжитесь организацией –				
	расстояние от источника	поставщиком тепла				
	тепла					

7. Комплектность

В комплект поставки входит:

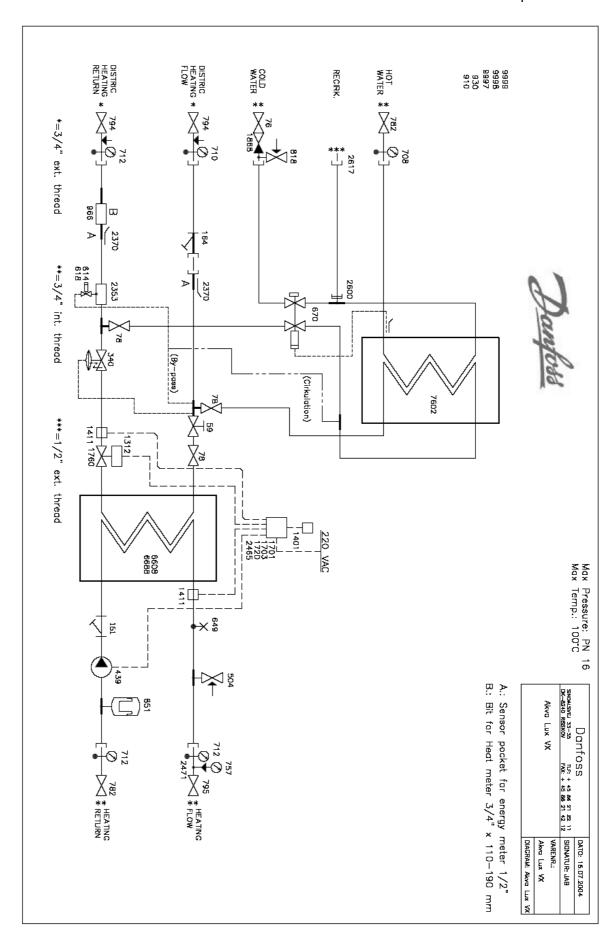
- Тепловой пункт Akva Vita VX без кожуха;
- Упаковочная коробка;
- Паспорт
- Дополнительные опции:
- кожух из нержавеющей стали;
- окрашенный в белый цвет кожух;
- предохранительный и обратный клапан.

8. Утилизация

Утилизация изделия производится в соответствии с установленным на предприятии порядком (переплавка, захоронение, перепродажа), составленным в соответствии с Законами РФ №96-ФЗ "Об охране атмосферного воздуха", №89-ФЗ "Об отходах производства и потребления", №52-ФЗ "Об санитарно-эпидемиологическом благополучии населения", а также другими российскими и региональными нормами, актами, правилами, распоряжениями и пр.

9. Приемка и испытания.

Продукция, указанная в данном паспорте изготовлена, испытана и принята, в соответствии с действующей технической документацией фирмы-изготовителя.


10. Сертификация

Тепловой пункт Akva Vita VX и все дополнительное оборудование к нему сертифицированы ГОССТАНДАРТом России в системе сертификации ГОСТ Р. Имеется сертификат соответствия, а также санитарно – эпидемиологическое заключение ЦГСЭН о гигиенической оценке.

11. Гарантийные обязательства

Изготовитель - поставщик гарантирует соответствие теплового пункта Akva Vita техническим требованиям при соблюдении потребителем условий транспортировки, хранения и эксплуатации.

Гарантийный срок эксплуатации и хранения клапанов - 12 месяцев с даты продажи или 18 месяцев с даты производства.

Спецификация оборудования теплового пункта Akva Lux VX

Номер	Наименовании компонента	Кол-во
позиции		
59	Регулирующий клапан 3/4"	1
76	Шаровой кран 3/4"	1
161	Фильтр 3/4"	1
164	Фильтр со сливной пробкой 1/2"	1
340	Регулятор перепада давления Force TD200u/12 – 0,5 бар	1
439	Hacoc Grundfoss UPS CIL 15-40 220 B PN6	1
504	Предохранительный клапан	1
614	Термостатическая головка к клапану FJVR 10-50 C	1
618	Клапан FJVR 3/8 " PN16	1
649	Автоматический воздухоотводчик 1/8"	1
670	РТ – регулятор	1
708	Термометр 0-60 С	1
710	Термометр 0-160 C	1
712	Термометр 0-120 C	3
757	Манометр 0-4 бар	1
782	Шаровой кран ¾" с термометром	2
794	Шаровой кран ¾"	2
795	Шаровой кран ¾" с термометром	1
818	Предохранительный клапан ½ "х ¾" 6 бар	1
851	Расширительный бак 12 л, 0,5 бар	1
910	Белый кожух с дверцей	1
930	Задняя рама для настенного крепления	1
966	Вставка для расходомера ¾ "	1
1312	Электропривод AMV 100 220 B	1
1401	Датчик температуры наружного воздуха ESMT	1
1411	Датчик температуры ESM-11	2
1701	Электронный контроллер ECL 200	1
1703	Панель крепления ECL	1
1720	Карточка Р30 для ECL 200	1
1760	Регулирующий клапан VS2 Dn=15 Kvs=1	1
1868	Обратный клапан ¾"	1
2465	Монтажное место для блока автоматики	1
6608	Паянный теплообменник для отопления	1
6688	Изоляция для паянного теплообменника	1
7602	Паянный теплообменник для ГВС	