573. Точки А и В лежат на сфере с центром O∉АВ, а точка М лежит на отрезке АВ. Докажите, что: а) если М — середина отрезка АВ, то ОМ⊥АВ; б) если ОМ⊥АВ, то М — середина отрезка АВ.
Правильный ответ на задачу
.
574. Точка М — середина отрезка АВ, концы которого лежат на сфере радиуса R с центром О. Найдите: а) ОМ, если R = 50 см, AB=40 см; б) ОМ, если R = 15 мм, АВ= 18 мм; в) АВ, если R=10 дм, ОМ =60 см; г) AM, если R=a, ОМ = b.
Правильный ответ на задачу
.
575. Точки А и В лежат на сфере радиуса R. Найдите расстояние от центра сфера до прямой АВ, если АВ = m.
Правильный ответ на задачу
.
576. Найдите уравнение сферы радиуса R с центром А, если: а) А (2; -4; 7), R = 3; б) А (0; 0; 0), R = √2; в) А (2; 0; 0), R = 4.
Правильный ответ на задачу
.
577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0), N (5; 0; — 1); б) А ( — 2; 2; 0), N(0; 0; 0); в) A (0; 0; 0), N (5; 3; 1).
579. Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координаты центра и радиус этой сферы: а) х2 —4x + y2 + z2 =0; б) x2+y2+z2—2y= 24; в) х2+ 2х + у2+z2 = 3; г) х2 — х — y2 + 3y + z2 —2z = 2,5.
Правильный ответ на задачу
.
580. Шар радиуса 41 дм пересечен плоскостью, находящейся на расстоянии 9 дм от центра. Найдите площадь сечения.
Правильный ответ на задачу
.
581. Вершины треугольника ABC лежат на сфере радиуса 13 см. Найдите расстояние от центра сферы до плоскости треугольника, если АВ = 6 см, ВС = 8 см, АС= 10 см.
Правильный ответ на задачу
.
582. Вершины прямоугольника лежат на сфере радиуса 10 см. Найдите расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16 см.
Правильный ответ на задачу
.
583. Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если его стороны равны 10 см, 10 см и 12 см.
Правильный ответ на задачу
.
584. Все стороны треугольника ABC касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если AB= 13 см, BC= 14 см, CA = 15 см.
Правильный ответ на задачу
.
585. Все стороны ромба, диагонали которого равны 15 см и 20 см, касаются сферы радиуса 10 см. Найдите расстояние от центра сферы до плоскости ромба.
586. Отрезок ОН—высота тетраэдра ОАВС. Выясните взаимное расположение сферы радиуса R с центром О и плоскости ABC, если: a) R = 6 дм, ОН = 60 см; б) R = 3 м, ОН = 95 см; в) R = 5 дм, О А = 45 см; г) R = 3,5 дм, ОН = 40 см.
Правильный ответ на задачу
.
587. Расстояние от центра шара радиуса R до секущей плоскости равно d. Вычислите: а) площадь S сечения, если R — 12 см, d = 8 см; б) R, если площадь сечения равна 12 см2, d = 2 см.
Правильный ответ на задачу
.
588. Через точку, делящую радиус сферы пополам, проведена секущая плоскость, перпендикулярная к этому радиусу. Радиус сферы равен R. Найдите: а) радиус получившегося сечения; б) площадь боковой поверхности конуса, вершиной которого является центр сферы, а
Правильный ответ на задачу
.
589. Секущая плоскость проходит через конец диаметра сферы радиуса R так, что угол между диаметром и плоскостью равен а. Найдите длину окружности, получившейся в сечении, если: a) R = 2 см, α = 30°; б) R = 5 м, α = 45°.
Правильный ответ на задачу
.
590. Через точку сферы радиуса R, которая является границей данного шара, проведены две плоскости, одна из которых является касательной к сфере, а другая наклонена под углом φ к касательной плоскости. Найдите площадь сечения данного шара.
Правильный ответ на задачу
.
591. Сфера касается граней двугранного угла в 120°. Найдите радиус сферы и расстояние между точками касания, если расстояние от центра сферы до ребра двугранного угла равно а.
Правильный ответ на задачу
.
592. Радиус сферы равен 112 см. Точка, лежащая на плоскости, касательной к сфере, удалена от точки касания на 15 см. Найдите расстояние от этой точки до ближайшей к ней точки сферы.
Правильный ответ на задачу
.
593. Найдите площадь сферы, радиус которой равен: а) 6 см; б) 2 дм; в) √2 м; г) 2√3 см.
Правильный ответ на задачу
.
594. Площадь сечения сферы, проходящего через ее центр, равна 9 м2. Найдите площадь сферы.
Правильный ответ на задачу
.
595. Площадь сферы равна 324 см2. Найдите радиус сферы.
Правильный ответ на задачу
.
596. Используя формулу площади сферы, докажите, что площади двух сфер пропорциональны квадратам их радиусов.
Правильный ответ на задачу
.
597. Вычислите радиус круга, площадь которого равна площади сферы радиуса 5 м.
Правильный ответ на задачу
.
598. Радиусы двух параллельных сечений сферы равны 9 см и 12 см. Расстояние между секущими плоскостями равно 3 см. Найдите площадь сферы.
Правильный ответ на задачу
.
599. Радиусы сечений сферы двумя взаимно перпендикулярными плоскостями равны r1 и r2. Найдите площадь сферы, если сечения имеют единственную общую точку.
Правильный ответ на задачу
.
600. Используя формулу площади сферы, докажите, что площадь полной поверхности цилиндра, полученного при вращении квадрата вокруг одной из его сторон, равна площади сферы, радиус которой равен стороне квадрата.
Глава VI. Цилиндр, конус и шар. Дополнительные задачи
601. Площадь осевого сечения цилиндра равна S. Найдите площадь сечения цилиндра плоскостью, проходящей через середину радиуса основания перпендикулярно к этому радиусу.
Правильный ответ на задачу
.
602. Вершины А и В прямоугольника ABCD лежат на окружности одного из оснований цилиндра, а вершины С и D — на окружности другого основания. Вычислите радиус цилиндра, если его образующая равна а, АВ=а, а угол между прямой ВС и плоскостью основания равен 6
Правильный ответ на задачу
.
603. Докажите, что если плоскость параллельна оси цилиндра и расстояние между этой плоскостью и осью равно радиусу цилиндра, то плоскость содержит образующую цилиндра, и притом только одну. (В этом случае плоскость называется касательной плоскостью к цили
Правильный ответ на задачу
.
604. При вращении прямоугольника вокруг неравных сторон получаются цилиндры, площади полных поверхностей которых равны S1 и S2. Найдите диагональ прямоугольника.
Правильный ответ на задачу
.
605. Найдите отношение площади полной поверхности цилиндра к площади боковой поверхности, если осевое сечение цилиндра представляет собой: а) квадрат; б) прямоугольник ABCD, в котором AB:AD = 1:2.
Правильный ответ на задачу
.
606. Площадь боковой поверхности цилиндра равна площади круга, описанного около его осевого сечения. Найдите отношение радиуса цилиндра к его высоте.
Правильный ответ на задачу
.
607. Найдите высоту и радиус цилиндра, имеющего наибольшую площадь боковой поверхности, если периметр осевого сечения цилиндра равен 2р.
Правильный ответ на задачу
.
608. Толщина боковой стенки и дна стакана цилиндрической формы равна 1 см, высота стакана равна 16 см, а внутренний радиус равен 5 см. Вычислите площадь полной поверхности стакана.
Правильный ответ на задачу
.
609. Четверть круга свернута в коническую поверхность. Докажите, что образующая конуса в четыре раза больше радиуса основания.
Правильный ответ на задачу
.
610. Найдите косинус угла при вершине осевого сечения конуса, имеющего три попарно перпендикулярные образующие.
Правильный ответ на задачу
.
611. Площадь основания конуса равна S1, а площадь боковой поверхности равна S0. Найдите площадь осевого сечения конуса.
612. Отношение площадей боковой и полной поверхностей конуса равно 7/8. Найдите угол между образующей и плоскостью основания конуса.
Правильный ответ на задачу
.
613. Через вершину конуса и хорду основания, стягивающую дугу в 120°, проведено сечение, составляющее с плоскостью основания угол в 45°. Найдите площадь сечения, если радиус основания равен 4 см.
Правильный ответ на задачу
.
614. Найдите угол между образующей и высотой конуса, если разверткой его боковой поверхности является сектор с дугой 270°.
Правильный ответ на задачу
.
615. Прямоугольный треугольник с катетами а и b вращается вокруг гипотенузы. Найдите площадь поверхности полученного тела.
Правильный ответ на задачу
.
616. Равнобедренная трапеция, основания которой равны 6 см и 10 см, а острый угол 60°, вращается вокруг большего основания. Вычислите площадь поверхности полученного тела.
Правильный ответ на задачу
.
617. Высота конуса равна 4 см, а радиус основания равен 3 см. Вычислите площадь полной поверхности правильной n-угольной пирамиды, вписанной в конус*, если: а) n = 3; б) n= 4; в) n = 6.
Правильный ответ на задачу
.
618. Диагонали осевого сечения усеченного конуса перпендикулярны. Одно из оснований осевого сечения равно 40 см, а его площадь равна 36 дм2. Вычислите площади боковой и полной поверхностей усеченного конуса.
Правильный ответ на задачу
.
619. Докажите, что: а) центр сферы является центром симметрии сферы; б) любая прямая, проходящая через центр сферы, является осью симметрии сферы; в) любая плоскость, проходящая через центр сферы, является плоскостью симметрии сферы.
Правильный ответ на задачу
.
620. Вершины прямоугольного треугольника с катетами 1,8 см и 2,4 см лежат на сфере, а) Докажите, что если радиус сферы равен 1,5 см, то центр сферы лежит в плоскости треугольника. б) Найдите расстояние от центра сферы до плоскости треугольника, если радиу
621. Расстояние от центра сферы радиуса R до данной прямой равно d. Докажите, что: а) если d<R, то прямая пересекает сферу в двух точках; б) если d = R, то прямая имеет только одну общую точку со сферой; в) если d>R, то прямая не имеет со сферой ни
623. Найдите радиус сечения сферы х2 +у2 + z2 = 36 плоскостью, проходящей через точку М (2; 4; 5) и перпендикулярной к оси абсцисс.
Правильный ответ на задачу
.
624. Два прямоугольника лежат в различных плоскостях и имеют общую сторону. Докажите, что все вершины данных прямоугольников лежат на одной сфере.
Правильный ответ на задачу
.
625. Расстояние между центрами двух равных сфер меньше их диаметра. а) Докажите, что пересечением этих сфер является окружность. б) Найдите радиус этой окружности, если радиусы сфер равны R, а расстояние между их центрами равно 1,6 R.
Правильный ответ на задачу
.
626. Точки А, В, С и D лежат на сфере радиуса R, причем ∠ADB= ∠BDC=∠CDA = 2φ, AD = BD = CD. Найдите: а) АВ и AD; б) площадь сечения сферы плоскостью ABC.
Правильный ответ на задачу
.
627. Радиус сферы равен 10 см. Вне сферы дана точка М на расстоянии 16 см от ближайшей точки сферы. Найдите длину такой окружности на сфере, все точки которой удалены от точки М на расстояние 24 см.
Правильный ответ на задачу
.
628. Тело ограничено двумя сферами с общим центром. Докажите, что площадь его сечения плоскостью, проходящей через центры сфер, равна площади сечения плоскостью, касательной к внутренней сфере.
Разные задачи на многогранник, цилиндр, конус и шар
629. Докажите, что если одна из граней вписанной в цилиндр треугольной призмы* проходит через ось цилиндра, то две другие грани взаимно перпендикулярны.
Правильный ответ на задачу
.
630. В конус высотой 12 см вписана пирамида, основанием которой является прямоугольник со сторонами 6 см и 8 см. Найдите отношение площадей полных поверхностей пирамиды и конуса.
Правильный ответ на задачу
.
631. В усеченный конус вписана правильная усеченная n-угольная пирамида (т.е. основания пирамиды вписаны в основания усеченного конуса). Радиусы оснований усеченного конуса равны 2 см и 5 см, а высота равна 4 см. Вычислите площадь полной поверхности пирам
Правильный ответ на задачу
.
632. Докажите что если в правильную призму можно вписать сферу, то центром сферы является середина отрезка, соединяющего центры оснований этой призмы.
Правильный ответ на задачу
.
633. Докажите, что центр сферы, вписанной в правильную пирамиду, лежит на высоте этой пирамиды.
Правильный ответ на задачу
.
634. Радиус сферы равен R. Найдите площадь полной поверхности описанного около сферы многогранника, если этот многогранник является: а) кубом; б) правильной шестиугольной призмой; в) правильным тетраэдром.
Правильный ответ на задачу
.
635. Около сферы радиуса R описана правильная четырехугольная пирамида, плоский угол при вершине которой равен α. а) Найдите площадь боковой поверхности пирамиды. б) Вычислите эту площадь при R = 5 см, α = 60°.
Правильный ответ на задачу
.
636. Докажите, что если в правильную усеченную четырехугольную пирамиду можно вписать сферу, то апофема пирамиды равна полусумме сторон оснований ее боковой грани.
Правильный ответ на задачу
.
637. Докажите, что центр сферы, описанной около: а) правильной призмы, лежит в середине отрезка, соединяющего центры оснований этой призмы; б) правильной пирамиды, лежит на высоте этой пирамиды или ее продолжении.
Правильный ответ на задачу
.
638. Докажите, что: а) около любого тетраэдра можно описать сферу; б) в любой тетраэдр можно вписать сферу.
639. Радиус сферы равен R. Найдите площадь полной поверхности: а) вписанного в сферу куба; б) вписанной правильной шестиугольной призмы, высота которой равна R; в) вписанного правильного тетраэдра.
Правильный ответ на задачу
.
640. В правильной треугольной пирамиде сторона основания равна а, а боковое ребро равно 2а. Найдите радиусы вписанной и описанной сфер.
Правильный ответ на задачу
.
641. В правильной четырехугольной пирамиде радиусы вписанной и описанной сфер равны 2 см и 5 см. Найдите сторону основания и высоту пирамиды.
Правильный ответ на задачу
.
642. Сфера вписана в цилиндр (т. е. она касается оснований цилиндра и каждой его образующей, рис. 157, а). Найдите отношение площади сферы к площади полной поверхности цилиндра.
Правильный ответ на задачу
.
643. В конус с углом φ при вершине осевого сечения и радиусом основания r вписана сфера радиуса R (т. е. сфера касается основания конуса и каждой его образующей, рис. 158, а). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) &
Правильный ответ на задачу
.
644. В конус вписана сфера радиуса r. Найдите площадь полной поверхности конуса, если угол между образующей и основанием конуса равен а.
Правильный ответ на задачу
.
645. Цилиндр вписан в сферу (т. е. основания цилиндра являются сечениями сферы, рис. 157, б). Найдите отношение площади полной поверхности цилиндра к площади сферы, если высота цилиндра равна диаметру основания.
Правильный ответ на задачу
.
646. Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известн
Глава VII. Объемы тел. § 1. Объём прямоугольного параллелепипеда
647. Тело R состоит из тел Р и Q, имеющих соответственно объемы V1 и V2. Выразите объем V тела R через V1 и V2, если: а) тела Р и Q не имеют общих внутренних точек; б) тела Р и Q имеют общую часть, объем которой равен
Правильный ответ на задачу
.
648. Найдите объем прямоугольного параллелепипеда, стороны основания которого равны a и b, а высота равна h, если:
Правильный ответ на задачу
.
649. Найдите объем куба ABCDA1B1C1D1 если: а) АС= 12 см; б) AC1 =3√2; в) DE= 1 см, где Е — середина ребра АВ.
Правильный ответ на задачу
.
650. Измерения прямоугольного параллелепипеда равны 8 см, 12 см и 18 см. Найдите ребро куба, объем которого равен объему этого параллелепипеда.
Правильный ответ на задачу
.
651. Кирпич имеет форму прямоугольного параллелепипеда с измерениями 25 см, 12 см и 6,5 см. Плотность кирпича равна 1,8 г/см3. Найдите его массу.
Правильный ответ на задачу
.
652. Найдите объем прямоугольного параллелепипеда ABCDA1B1C1D1, если AC1 = 13 см, BD= 12 см и ВС1 = 11 см.
Правильный ответ на задачу
.
653. Диагональ прямоугольного параллелепипеда равна 18 см и составляет угол в 30° с плоскостью боковой грани и угол в 45° с боковым ребром. Найдите объем параллелепипеда.
Правильный ответ на задачу
.
654. Диагональ прямоугольного параллелепипеда составляет угол α с плоскостью боковой грани и угол β с плоскостью основания. Найдите объем параллелепипеда, если его высота равна h.
Правильный ответ на задачу
.
655. Стороны основания прямоугольного параллелепипеда равны a и b. Диагональ параллелепипеда составляет с боковой гранью, содержащей сторону основания, равную b, угол в 30°. Найдите объем параллелепипеда.
Правильный ответ на задачу
.
656. В прямоугольном параллелепипеде ABCDA1B1C1D1 диагональ B1D составляет с плоскостью основания угол в 45°, а двугранный угол A1B1BD равен 60°. Найдите объем параллелепипеда, если диагональ основания равна 12 см.
Правильный ответ на задачу
.
657. Найдите объем прямоугольного параллелепипеда ABCDA1B1C1D1, если: а) АС1 = 1 м, ∠С1AС=45°, ∠С1AB = 60°; б) AC1 =24 см, ∠C1AA1= 45°, AC1 составляет угол в 30° с плоскостью боковой грани.
Правильный ответ на задачу
.
658. Найдите объем прямой призмы АВСA1B1C1 и если ∠BAC = 90°, ВС =37 см, АВ = 35 см, AA1 = 1,1 дм.
Глава VII. Объемы тел. § 2. Объём прямой призмы и цилиндра
659. Найдите объем прямой призмы АВСA1B1C1, если: а) ∠ВАС= 120°, AB = 5 см, AC = 3 см и наибольшая из площадей боковых граней равна 35 см2; б) ∠AB1C = 60°, АВ1 = 3, СВ1=2 и двугранный угол с ребром ВВ1 прямой.
Правильный ответ на задачу
.
660. Найдите объем прямой призмы АВСA1B1C1, если АВ = ВС = m, ∠ABC = φ и BB1=BD, где BD - высота треугольника ABC.
Правильный ответ на задачу
.
661. Найдите объем прямой призмы ABCA1B1C1, если АВ = ВС, ∠ABC = α, диагональ А1С равна l и составляет с плоскостью основания угол β.
Правильный ответ на задачу
.
662. Основанием прямой призмы является параллелограмм. Через сторону основания, равную и, и противолежащую ей сторону другого основания проведено сечение, составляющее угол β с плоскостью основания. Площадь сечения равна Q. Найдите объем призмы.
Правильный ответ на задачу
.
663. Найдите объем правильной n-угольной призмы, у которой каждое ребро равно а, если: а) n = 3; б) n = 4; в) n = 6; г) n = 8.
Правильный ответ на задачу
.
664. В правильной треугольной призме через сторону нижнего основания и противолежащую ей вершину верхнего основания проведено сечение, составляющее угол в 60° с плоскостью основания. Найдите объем призмы, если сторона основания равна а.
Правильный ответ на задачу
.
665. Наибольшая диагональ правильной шестиугольной призмы равна 8 см и составляет с боковым ребром угол в 30°. Найдите объем призмы.
Правильный ответ на задачу
.
666. Пусть V, г и h соответственно объем, радиус и высота цилиндра. Найдите: а) V, если r = 2√2 см, h = 3 см; б) r, если V =120 см3, h = 3,6 см; в) h, если r = h, V = 8π см3.
Правильный ответ на задачу
.
667. Алюминиевый провод диаметром 4 мм имеет массу 6,8 кг. Найдите длину провода (плотность алюминия 2,6 г/см3).
Правильный ответ на задачу
.
668. Какое количество нефти (в тоннах) вмещает цилиндрическая цистерна диаметра 18 м и высотой 7 м, если плотность нефти равна 0,85 г/см3?
Правильный ответ на задачу
.
669. П лощадь основания цилиндра равна Q, а площадь его осевого сечения равна S. Найдите объем цилиндра.
Правильный ответ на задачу
.
670. Свинцовая труба (плотность свинца 11,4 г/см3) с толщиной стенок 4 мм имеет внутренний диаметр 13 мм. Какова масса трубы, если ее длина равна 25 м?
Правильный ответ на задачу
.
671. В цилиндр вписана правильная n-угольная призма. Найдите отношение объемов призмы и цилиндра, если: а) n = 3; б) n = 4; в) n=6; г) n = 8; д) n произвольное целое число.
Правильный ответ на задачу
.
672. В цилиндр вписана призма, основанием которой является прямоугольный треугольник с катетом а и прилежащим к нему углом α. Найдите объем цилиндра, если высота призмы равна h.
Глава VII. Объемы тел. § 3. Объём наклонной призмы, пирамиды и конуса
673. Сечение тела, изображенного на рисунке 175, плоскостью, перпендикулярной к оси Ох и проходящей через точку с абсциссой х, является квадратом, сторона которого равна 1/x. Найдите объем этого тела.
Правильный ответ на задачу
.
674. Фигура, заштрихованная на рисунке 176, вращается вокруг оси Ох. Найдите объем полученного тела.
Правильный ответ на задачу
.
675. Фигура, заштрихованная на рисунке 177, вращается вокруг оси Оу. Найдите объем полученного тела.
Правильный ответ на задачу
.
676. Найдите объем наклонной призмы, у которой основанием является треугольник со сторонами 10 см, 10 см и 12 см, а боковое ребро, равное 8 см, составляет с плоскостью основания угол в 60°.
Правильный ответ на задачу
.
677. Найдите объем наклонной призмы АВСA1B1C1, если АВ = ВС = СА = а, АВВ1А1 — ромб, АВ1<ВА1, АВ1=b, двугранный угол с ребром АВ прямой.
Правильный ответ на задачу
.
678. Основанием призмы АВСА1В1С1 является равносторонний треугольник ABC со стороной m. Вершина А1 проектируется в центр этого основания, а ребро АА1 составляет с плоскостью основания угол φ. Найдите объем призмы.
Правильный ответ на задачу
.
679. Основанием наклонной призмы ABCA1B1C1 является прямоугольный треугольник ABC с катетами АВ = 7 см и AC = 24 см. Вершина А1 равноудалена от вершин А, В и С. Найдите объем призмы, если ребро АА1 составляет с плоскостью основания угол в 45°.
Правильный ответ на задачу
.
680. Основанием наклонного параллелепипеда является прямоугольник со сторонами а и b. Боковое ребро длины с составляет со смежными сторонами основания углы, равные φ. Найдите объем параллелепипеда.
Правильный ответ на задачу
.
681. Все грани параллелепипеда — равные ромбы, диагонали которых равны 6 см и 8 см. Найдите объем параллелепипеда.
Правильный ответ на задачу
.
682. Докажите, что объем наклонной призмы равен произведению бокового ребра на площадь сечения призмы плоскостью, перпендикулярной к боковым ребрам и пересекающей их.
Правильный ответ на задачу
.
683. Найдите объем наклонной треугольной призмы, если расстояния между ее боковыми ребрами равны 37 см, 13 см и 30 см, а площадь боковой поверхности равна 480 см2.
684. Найдите объем пирамиды с высотой h, если: a) h = 2 м, а основанием служит квадрат со стороной 3 м; б) h = 2,2 м, а основанием служит треугольник ABC, в котором АВ — 20 см, ВС = 13,5 см, ∠AВС = 30°.
Правильный ответ на задачу
.
685. Найдите объем правильной треугольной пирамиды, высота которой равна 12 см, а сторона основания равна 13 см.
Правильный ответ на задачу
.
686. Найдите объем правильной треугольной пирамиды с боковым ребром l, если: а) боковое ребро составляет с плоскостью основания угол φ; б) боковое ребро составляет с прилежащей стороной основания угол α; в) плоский угол при вершине равен β.
Правильный ответ на задачу
.
687. В правильной треугольной пирамиде плоский угол при вершине равен φ, а сторона основания равна а. Найдите объем пирамиды.
Правильный ответ на задачу
.
688. Найдите объем правильной четырехугольной пирамиды, если: а) ее высота равна Н, а двугранный угол при основании равен β; б) сторона основания равна m, а плоский угол при вершине равен α.
Правильный ответ на задачу
.
689. Боковое ребро правильной четырехугольной пирамиды равно m и составляет с плоскостью основания угол φ. Найдите объем пирамиды.
Правильный ответ на задачу
.
690. Найдите объем и площадь боковой поверхности правильной шестиугольной пирамиды, если ее боковое ребро равно 13 см, а диаметр круга, вписанного в основание, равен 6 см.
Правильный ответ на задачу
.
691. Основанием пирамиды служит равнобедренный треугольник ABC, в котором АВ = ВС= 13 см, АС= 10 см. Каждое боковое ребро пирамиды образует с ее высотой угол в 30°. Вычислите объем пирамиды.
Правильный ответ на задачу
.
692. Основанием пирамиды является прямоугольный треугольник с катетами a и b. Каждое ее боковое ребро наклонено к плоскости основания под углом φ. Найдите объем пирамиды.
Правильный ответ на задачу
.
693. Основание четырехугольной пирамиды — прямоугольник с диагональю b и углом α между диагоналями. Боковые ребра наклонены к плоскости основания под одним и тем же углом. Найдите этот угол, если объем пирамиды равен V.
Правильный ответ на задачу
.
694. Основанием пирамиды является ромб со стороной 6 см. Каждый из двугранных углов при основании равен 45°. Найдите объем пирамиды, если ее высота равна 1,5 см.
695. Найдите объем треугольной пирамиды SABC, если: а) ∠САВ = 90°, ВС = с, ∠АВС=φ и каждое боковое ребро составляет с плоскостью основания угол Θ; б) АВ= 12 см, ВС = CA = 10 см и двугранные углы при основании равны 45°; в) боковые ребра
Правильный ответ на задачу
.
696. Основанием пирамиды DABC является треугольник, в котором АВ = 20 см, AC = 29 см, ВС = 21 см. Грани DAB и DAC перпендикулярны к плоскости основания, а грань DBC составляет с ней угол в 60°. Найдите объем пирамиды.
Правильный ответ на задачу
.
697. Стороны оснований правильной усеченной треугольной пирамиды равны а и 0,5а, апофема боковой грани равна а. Найдите объем усеченной пирамиды.
Правильный ответ на задачу
.
698. Основания усеченной пирамиды — равнобедренные прямоугольные треугольники, гипотенузы которых равны m и n (m>n). Две боковые грани, содержащие катеты, перпендикулярны к основанию, а третья составляет с ним угол φ. Найдите объем усеченной пирами
Правильный ответ на задачу
.
699. Основанием пирамиды является прямоугольный треугольник, катеты которого равны 24 дм и 18 дм. Каждое боковое ребро равно 25 дм. Пирамида пересечена плоскостью, параллельной плоскости основания и делящей боковое ребро пополам. Найдите объем полученной
Правильный ответ на задачу
.
700. В правильной усеченной четырехугольной пирамиде стороны оснований равны 6 см и 4 см, а площадь сечения пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани, равна 15 см2. Найдите объем усеченной пирамиды.
Правильный ответ на задачу
.
701. Пусть h, г и V — соответственно высота, радиус основания и объем конуса. Найдите: а) V, если h = 3 см, r=1,5 см; б) h, если г = 4 см, V = 48πсм3; в) r, если h = m, V = p.
Правильный ответ на задачу
.
702. Высота конуса равна 5 см. На расстоянии 2 см от вершины его пересекает плоскость, параллельная основанию. Найдите объем исходного конуса, если объем меньшего конуса, отсекаемого от исходного, равен 24 см3.
Правильный ответ на задачу
.
703. Найдите объем конуса, если площадь его основания равна Q, а площадь боковой поверхности равна Р.
Правильный ответ на задачу
.
704. Высота конуса равна диаметру его основания. Найдите объем конуса, если его высота равна Н.
Правильный ответ на задачу
.
705. Найдите объем конуса, если его образующая равна 13 см, а площадь осевого сечения равна 60 см2.
Правильный ответ на задачу
.
706. Высота конуса равна 12 см, а его объем равен 324π см3. Найдите угол сектора, который получится, если боковую поверхность конуса развернуть на плоскость.
Правильный ответ на задачу
.
707. Площадь полной поверхности конуса равна 45π дм2. Развернутая на плоскость боковая поверхность конуса представляет собой сектор с углом в 60°. Найдите объем конуса.
Правильный ответ на задачу
.
708. Радиусы оснований усеченного конуса равны 3 м и 6 м, а образующая равна 5 м. Найдите объем усеченного конуса.
Правильный ответ на задачу
.
709. В усеченном конусе известны высота h, образующая l и площадь S боковой поверхности. Найдите площадь осевого сечения и объем усеченного конуса.
Глава VII. Объемы тел. § 4. Объём шара и площадь сферы
710, Пусть V —объем шара радиуса R, a S — площадь его поверхности. Найдите: а) S и V, если R = 4 см; б) R и S, если V = 113,04 см3; в) R и V, если S = 64π см2.
Правильный ответ на задачу
.
711. Диаметр Луны составляет (приблизительно) четвертую часть диаметра Земли. Сравните объемы Луны и Земли, считая их шарами.
Правильный ответ на задачу
.
712. Шар и цилиндр имеют равные объемы, а диаметр шара равен диаметру основания цилиндра. Выразите высоту цилиндра через радиус шара.
Правильный ответ на задачу
.
713. Стаканчик для мороженого конической формы имеет глубину 12 см и диаметр верхней части 5 см. На него сверху положили две ложки мороженого в виде полушарий диаметром 5 см. Переполнит ли мороженое стаканчик, если оно растает?
Правильный ответ на задачу
.
714. В цилиндрическую мензурку диаметром 2,5 см, наполненную водой до некоторого уровня, опускают 4 равных металлических шарика диаметром 1 см. На сколько изменится уровень воды в мензурке?
Правильный ответ на задачу
.
715. Сколько кубометров земли потребуется для устройства клумбы, имеющей форму шарового сегмента с радиусом основания 5 м и высотой 60 см?
Правильный ответ на задачу
.
716. Два равных шара расположены так, что центр одного лежит на поверхности другого. Как относится объем общей части шаров к объему одного шара?
Правильный ответ на задачу
.
717. Найдите объем шарового сегмента, если радиус окружности его основания равен 60 см, а радиус шара равен 75 см.
Правильный ответ на задачу
.
718. Диаметр шара разделен на три равные части и через точки деления проведены плоскости, перпендикулярные к диаметру. Найдите объем получившегося шарового слоя, если радиус шара равен R.
Правильный ответ на задачу
.
719. В шаре проведена плоскость, перпендикулярная к диаметру и делящая его на части 6 см и 12 см. Найдите объемы двух полученных частей шара.
Правильный ответ на задачу
.
720. Найдите объем шарового сектора, если радиус окружности основания соответствующего шарового сегмента равен 60 см, а радиус шара равен 75 см.
Правильный ответ на задачу
.
721. Круговой сектор с углом 30° и радиусом R вращается вокруг одного из ограничивающих его радиусов. Найдите объем получившегося шарового сектора.
Правильный ответ на задачу
.
722. Вода покрывает приблизительно ¾ земной поверхности. Сколько квадратных километров земной поверхности занимает суша? (Радиус Земли считать равным 6375 км.)
Правильный ответ на задачу
.
723. Сколько кожи пойдет на покрышку футбольного мяча радиуса 10 см? (На швы добавить 8% от площади поверхности мяча.)
Правильный ответ на задачу
.
724. Докажите, что площадь сферы равна площади полной поверхности конуса, высота которого равна диаметру сферы, а диаметр основания равен образующей конуса.
1. Каким соотношением связаны объемы V1 и V2 тел Р1 и Р2, если: а) тело Р1 содержится в теле P2; б) каждое из тел Р1 и Р2 составлено из n кубов с ребром 1 см?
Правильный ответ на задачу
.
2. Какую часть объема данной прямой треугольной призмы составляет объем треугольной призмы, отсеченной от данной плоскостью, проходящей через средние линии оснований?
Правильный ответ на задачу
.
3. Изменится ли объем цилиндра, если диаметр его основания увеличить в 2 раза, а высоту уменьшить в 4 раза?
Правильный ответ на задачу
.
4. Как изменится объем правильной пирамиды, если ее высоту увеличить в n раз, а сторону основания уменьшить в n раз?
Правильный ответ на задачу
.
5. Основаниями двух пирамид с равными высотами являются четырехугольники с соответственно равными сторонами. Равны ли объемы этих пирамид?
Правильный ответ на задачу
.
6. Как относятся объемы двух конусов, если их высоты равны, а отношение радиусов оснований равно 2?
Правильный ответ на задачу
.
7. Из каких тел состоит тело, полученное вращением равнобедренной трапеции вокруг большего основания?
Правильный ответ на задачу
.
8. Один конус получен вращением неравнобедренного прямоугольного треугольника вокруг одного из катетов, а другой конус — вращением вокруг другого катета. Равны ли объемы этих конусов?
Правильный ответ на задачу
.
9. Диаметр одного шара равен радиусу другого. Чему равно отношение: а) радиусов этих шаров; б) объемов шаров?
Правильный ответ на задачу
.
10. Сколько нужно взять шаров радиуса 2 см, чтобы сумма их объемов равнялась объему шара радиуса 6 см?
Правильный ответ на задачу
.
11. Во сколько раз объем шара, описанного около куба, больше объема шара, вписанного в этот же куб?
Правильный ответ на задачу
.
12. Как изменится площадь сферы, если ее радиус: а) уменьшить в 2 раза; б) увеличить в 3 раза?
Правильный ответ на задачу
.
13. Отношение объемов двух шаров равно 8. Как относятся площади их поверхностей?
Правильный ответ на задачу
.
14. В каком отношении находятся объемы двух шаров, если площади их поверхностей относятся как m2:n2?